УТВЕРЖДАЮ

Директор Федерального государственного бюджетного учреждения науки Институт физики твердого тела им. Ю. А. Осипьяна РАН доктор физико-математических наук,

член-корреспондент РАН

А. А. Левченко

2022 года

ОТЗЫВ

ведущей организации на диссертационную работу

Кулишова Артема Андреевича «Особенности роста кристаллов линейных сопряженных молекул из гомологических семейств аценов и олигофениленов», представленную на соискание учёной степени кандидата физико-математических наук по специальности 1.3.20 (01.04.18) — «Кристаллография, физика кристаллов»

Диссертационная работа Кулишова Артема Андреевича посвящена разработке и развитию эффективных методов получения кристаллов линейных сопряженных олигомеров на примере аценов и олигофениленов для органической электроники и фотоники, а также выявлению взаимосвязи между молекулярным строением, особенностями роста и структурой кристаллов.

Практическая ценность работы состоит в том, что автором развиты эффективные методы выращивания кристаллов линейных аценов и олигофениленов из растворов и паровой фазы, позволяющие получать монокристаллические образцы в масштабе ~ 1 см для фундаментальных и прикладных задач электроники и фотоники. Для рассматриваемых соединений двух семейств линейных молекул кристаллы низших гомологов (нафталин, антрацен, дифенил, пара-терфенил) представляют большой интерес как эффективные сцинтилляционные материалы, а кристаллы высших гомологов являются эффективными органическими полупроводниками (тетрацен, пентацен) и синими излучателями (пара-кватерфенил, пара-квинкифенил, пара-сексифенил). Учитывая, что рост кристаллов рассматриваемых линейных сопряженных молекул ещё мало изучен, а для высших олигофениленов (пара-кватерфенил, пара-квинкифенил, пара-сексифенил) практически не исследован, то актуальность и практическая значимость работы не вызывает сомнений.

 ${\rm B}$ ходе выполнения работы автором получен целый ряд новых результатов как фундаментального, так и прикладного характера.

Впервые для исследуемых высших линейных олигофениленов и аценов определены и отработаны эффективные методы выращивания из растворов и пара плоских монокристаллов сантиметрового масштаба; проведено сравнительное исследование зарождения и роста кристаллов в условиях парового физического транспорта (ПФТ) в классическом исполнении (градиентное температурное поле) и с двумя температурными зонами. Было установлено, что двузонный метод позволяет точнее управлять параметрами роста и значительно превосходит по качеству получаемых кристаллов классический градиентный способ. В ходе исследования особенностей роста кристаллов пентацена в условиях парового физического транспорта были выделены и впервые исследованы методом РСА игольчатые кристаллы сантиметрового масштаба производного пентацена - 5,14-диметилен-5,14-дигидропентацена. Впервые установлено, что при выращивании из пара в приблизительно одинаковых условиях роста морфологическое качество кристаллов линейных аценов выше, чем у кристаллов линейных

олигофениленов. Были проведены экспериментальные и теоретические исследования поверхностных свойств кристаллов исследуемых аценов и олигофениленов и на основе классической термодинамической теории зародышеобразования впервые были определены критические размеры зародышей кристаллов линейных олигофениленов и аценов при образовании из растворов и паровой фазы.

В ходе исследования роста кристаллов в условиях метода ПФТ автором разработан новый термогравиметрический способ определения энтальпии сублимации, который на примере линейных аценов (нафталин, антрацен, тетрацен) для малых интервалов температур показал хорошее согласие с литературными данными.

Для решения поставленных задач диссертантом используется широкий набор методов: дифференциально-сканирующая калориметрия и термогравиметрия, рентгеноструктурный анализ, спектроскопия оптического поглощения и фотолюминесценции, оптическая и атомносиловая микроскопия, методы висячей и сидячей капли для определения поверхностных свойств растворов и развитой грани кристаллов. Автором сконструированы и изготовлены установки для выращивания кристаллов. Рост кристаллов осуществлялся из растворов методами испарения растворителя, «осадитель - растворитель» и снижения температуры раствора, а также из паровой фазы методами ПФТ. При выращивании кристаллов из пара был тщательно исследован классический способ с градиентным тепловым полем, а также впервые для выращивания органических кристаллов был предложен и изучен способ с двузонным температурным полем, показавшим в ходе исследований свою высокую эффективность. Такой широкий комплекс современных методов роста и анализа кристаллов, несомненно, способен обеспечить достоверность полученных в работе результатов.

Структура и основное содержание диссертации

Диссертационная работа Кулишова А. А. построена по традиционной схеме: введение, обзор литературы (Глава 1), описание материалов и методик исследования (Глава 2), экспериментальной (Глава 3) и теоретической (Глава 4) частей работы, общие выводы и список цитируемой литературы (263 наименования). Работа изложена на 221 странице, проиллюстрирована 98 рисунками и 28 таблицами. Главы делится на разделы, а в конце каждой главы (кроме Главы 2) приводятся подробные промежуточные выводы.

Во Введении обоснованы актуальность диссертационной работы, её научная новизна и практическая значимость, сформулированы цель и задачи исследования, приведены основные результаты работы.

В Главе 1 дается литературный обзор, в котором рассмотрены основные известные методы выращивания органических кристаллов. Автором представлены подробные сведения по физико-химическим свойствам исследуемых соединений, росту и структуре кристаллов и их поверхностным свойствам. Представлены данные теоретических и экспериментальных исследований зародышеобразования кристаллов на основе органических линейных сопряженных молекул в растворах и паровой фазе. На основе проведенного анализа показано, что в литературе весьма немного сведений по росту исследуемых соединений из растворов, а для высших гомологов $(n \ge 4)$ данные и вовсе отсутствуют. Также отсутствуют сведения по выращиванию монокристаллов сантиметрового масштаба высших олигофениленов ($n \ge 4$), в связи с чем их кристаллическое строение при низких температурах остается ещё недостаточно исследованным. Автором отмечено, что влияние формы сопряженной молекулы и её конформационной гибкости на особенности кристаллизации и склонность к формированию масштабных монокристаллов в настоящее время ещё мало изучено. В отношении молекулярного строения линейные ацены характеризуются наличием жесткой формы с ромбической симметрией D_{2h} , а олигофенилены гибкой конформационной структурой, допускающей вращение сопряженных фенильных групп относительно другу друга, при этом только плоская конфигурация олигофениленов имеет симметрию D_{2h} , а в общем случае молекулы будут иметь более низкую симметрию вплоть до ассиметричного состояния (C_1) . Отмечено, что роль конформации при кристаллизации для

линейных сопряженных молекул ещё малоисследована, а для семейства олигофениленов практически не изучена, и по этой причине их выбор как родственной группы для сравнения с жесткими безконформационными аценами представляется обоснованным для анализа взаимосвязи «структура молекулы – рост и структура кристаллов».

В Главе 2 представлена экспериментальная часть работы, включающая описание объектов исследования, методик выращивания и исследования кристаллов, а также приведен вывод уравнения для определения энтальпии сублимации в условиях метода парового физического транспорта в квазистационарном приближении для малого температурного интервала.

Глава 3 посвящена исследованиям роста кристаллов из растворов и паровой фазы. Представлены результаты уточнения растворимости, фазового поведения кристаллов при нагреве и кристаллической структуры. Автором выполнен больший объем работы по исследованию особенностей роста кристаллов из растворов и пара, в результате чего установлены эффективные методы выращивания и определены условия для получения монокристаллов сантиметрового масштаба. Заслуживает внимания внушительный по объему комплекс систематических исследований роста кристаллов в условиях парового физического транспорта с градиентным и двузонным тепловыми полями, в результате чего получен ряд интересных результатов по влиянию температурного фактора на характер осаждения и роста кристаллов. Стоит отметить, что для высших гомологов исследуемых соединений, пентацена и пара-сексифенила, при выращивании из пара в условиях двузонного температурного поля, судя по всему, получены кристаллы рекордных размеров. Анализ кристаллического строения полученных монокристаллов методом монокристальной рентгеновской дифракции при 85 и 295 К позволил сделать важное заключение о том, что отличительной особенностью линейных олигофениленов является реакция их молекулярного и кристаллического строения на внешнее воздействие (в частности температуру), в отличие от кристаллов аценов, которым свойственна стабильность по температуре, что, скорее всего, может являться причиной более лучшего морфологического качества кристаллов последних при выращивании в условиях парового физического транспорта, когда температура в зоне осаждения меняется в широком интервале.

Глава 4 посвящена экспериментальному и теоретическому исследованию поверхностных свойств кристаллов, а также термодинамическому анализу параметров зародышеобразования кристаллов из растворов и паровой фазы. Экспериментально установлено поверхностное натяжение растворов в условиях, близких к ростовым, и поверхностная энергия развитой грани (001) кристаллов методами висячей капли и контактного угла смачивания соответственно. Поверхностная энергия некоторых низкоиндексных граней кристаллов определена с помощью моделирования методом атомного силового поля OPLS. Полученные сведения по анизотропии поверхностных свойств исследуемых органических кристаллов, а также данные по поверхностному натяжению растворов позволили в рамках классического подхода на хорошем уровне выполнить моделирование параметров зародышеобразования кристаллов в условиях роста из растворов и паровой фазы. Надо сказать, что в силу острого недостатка данных по поверхностной энергии кристаллов работ по исследованию стадии зарождения кристаллов сравнительно не много, а для исследуемых линейных сопряженных молекул, за редким исключением, почти нет. В этой связи проведенные исследования представляют большой интерес для теории и практики кристаллизации линейных сопряженных молекул и актуальны при разработке тонкопленочных устройств органической оптоэлектроники путем осаждения слоев из паровой фазы или раствора.

Диссертация выполнена на высоком экспериментальном и теоретическом уровне. Полученные результаты опубликованы в ведущих рецензируемых научных журналах (10 статей), входящих в перечень ВАК, и представлены на национальных и международных научных конференциях (21 доклад). Кулишовым А. А. определены эффективные методы выращивания из растворов и пара органических монокристаллов сантиметрового масштаба и впервые в рамках систематического подхода на примере семейств линейных аценов и олигофениленов исследовано влияние конформационной гибкости молекул на особенности кристаллизации.

Особенно стоит отметить важность результатов об анизотропии зародышей кристаллов (глава 4.2 диссертации). Обнаружение различия в критических размерах зародыша вдоль различных кристаллографических осей является новым, а самих высокоанизотропных объектов для выращивания кристаллов не так много: слюда, купратные ВТСП и описываемые автором ацены и олигофенилены. С точки зрения практики, это может привести к появлению таких экзотических режимов выращивания кристаллов, когда растет только одна грань, а размеры других не увеличиваются, что автор кратко обсуждает в конце главы 4.2. Кроме того, эта часть исследований имеет для специалистов по выращиванию кристаллов мировоззренческое значение, ибо развивает наши представления в отношении такого базового пункта, как зародышеобразование. Вместе с тем заслуживает внимания предложенный новый способ определения энтальпии сублимации в ходе роста кристаллов в условиях парового физического транспорта.

Таким образом, представленное диссертационное исследование, безусловно, вносит весомый вклад в развитие фундаментальных основ и практики роста кристаллов линейных сопряженных органических молекул.

Автореферат достаточно полно отражает содержание диссертации.

Замечания по диссертации

При общем положительном впечатлении от диссертационной работы Кулишова А. А., тем не менее, имеется несколько замечаний:

- 1. В тексте диссертационной работы имеются отдельные опечатки и неточности, например, в подписи к рисунку 1.1б на стр. 13 («частно-кристалличексая»), во втором абзаце на стр. 145 («...представленного на рисунок 3.62»), в промежуточной формуле 2.19 на стр. 63 и др.
- 2. В секции 3.1.4., где описывается получение кристаллов антрацена методами ПФТ, не совсем понято, чем обусловлен выбор температуры горячей зоны в двухзонной модификации метода? Почему для получения больших образцов нельзя использовать температуру, соответствующую максимальной скорости роста кристаллов (Рисунок 3.14)?
- 3. Не ясно, по какой причине не исследована кристаллическая структура *пара*сексифенила (6P), хотя достаточно крупные для рентгеноструктурного анализа кристаллы выращены были.
- 4. Также, к сожалению, не представлены данные ДСК об уточнении фазового поведения 6P при высоких температурах, учитывая весьма скудную информацию об этом в литературе.
- 5. В выводах автор указывает, что конформационная гибкость молекул олигофениленов обусловливает нестабильное поведение кристаллической структуры по температуре (наличие низкотемпературных фазовых переходов), в отличие от жестких аценов. На наш взгляд, наличие исследований по влиянию температурного фактора на параметры элементарной ячейки кристаллов линейных олигофениленов в интервале от 85 до 295 К (с шагом 10 или 20 К) хорошо бы дополнило работу с точки зрения фиксирования температур фазовых переходов и установления особенностей структурной трансформации молекул. Кроме того, остается открытым вопрос о влиянии скорости охлаждения/нагрева на кристаллическую структуру и конформационную неустойчивость олигофениленов.

Общее заключение по работе

Указанные замечания не снижают общего высокого научного уровня и ценности работы диссертанта. Работа является логически целостным и завершенным научным исследованием, в результате которого получен ряд новых результатов, представляющих несомненный фундаментальный и практический интерес. На наш взгляд, поставленные задачи решены, а цель достигнута. Материал диссертации изложен последовательно, рисунки и графики хорошо иллюстрируют полученные результаты. Автореферат диссертации соответствует ее содержанию, правильно и в полном объеме отражает результаты и выводы работы.

Таким образом, диссертация Кулишова А. А. «Особенности роста кристаллов линейных сопряженных молекул из гомологических семейств аценов и олигофениленов», несомненно, является самостоятельным завершенным научным исследованием, имеет практическую и теоретическую значимость и полностью соответствует требованиям «Положения о присуждении ученых степеней» (утверждено постановлением РФ от 24 сентября 2013 года № 842), а автор работы — Кулишов Артем Андреевич заслуживает присуждения ученой степени кандидата физико — математических наук по специальности 1.3.20 (01.04.18) — «Кристаллография, физика кристаллов».

Доклад по работе Кулишова А.А. был заслушан на расширенном заседании семинара «Кристаллические структуры и фазовые превращения при нормальном и высоких давлениях» ИФТТ РАН. Отзыв на диссертацию Кулишова А.А. рассмотрен и утвержден на заседании ученого совета ИФТТ РАН:

Всего членов ученого совета – 22. Присутствовало на заседании 16 членов ученого совета. Результаты голосования: «за» - 16 чел., «против» - нет, «воздержалось» - нет. Протокол № 23 от 7 ноября 2022 г.

Даем согласие на обработку персональных данных.

Составители отзыва:
Кузьмин Алексей Васильевич,
старший научный сотрудник ИФТТ РАН,
кандидат физико-математических наук,
01.04.07 — «Физика конденсированного
состояния»,
142432, г. Черноголовка, Московская обл., ул.
Академика Осипьяна д.2
Федеральное государственное бюджетное
учреждение науки Институт физики твердого
тела имени Ю.А. Осипьяна Российской
академии наук (ИФТТ РАН)
е-mail: kuzminav@issp.ac.ru,
т. +7 (496) 522 8464

Хасанов Салават Салимьянович, заведующий лабораторией «Сектор элементного и структурного анализа» ИФТТ РАН, кандидат физико-математических наук, 01.04.07 — «Физика конденсированного состояния», 142432, г. Черноголовка, Московская обл., ул. Академика Осипьяна д.2 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук (ИФТТ РАН) е-mail: khasanov@issp.ac.ru, т. +7 (496) 522 8267

А.В. Кузьмин

С.С. Хасанов